Home » algebra

algebra

L’Universo di Laplace

Pierre-Simon Laplace nasce il 23 marzo del 1749 a Beaumont-eu-Auge, in un piccolo paesino della Normandia in Francia vicino alla foce del fiume Senna tra orchidee, prati e meli. Considerando le origini nessuno si sarebbe mai aspettato che diventasse uno dei più grandi scienziati del mondo...

Gauss e il burbero maestro

Vi racconto un aneddoto di uno dei più grandi matematici mai esistiti. Carl Friedrich Gauss: Astronomo, Fisico, Matematico, Topologo e chi più ne ha più ne metta… è stato soprannominato il Principe dei Matematici per le sue innumerevoli scoperte ed i suoi enormi contributi in quasi tutte le branche delle scienze. Già da piccolo mostrava una forte attitudine alla matematica… seguitemi, ci spostiamo nel 1785 a Brunswick.

Numeri binari ed algebre booleane

I computer: macchine superveloci, potenti e sempre più "intelligenti", capaci oramai di riconoscere visi, suoni, immagini - svolgere calcoli mostruosi come i sistemi di equazioni differenziali non lineari, scomporre in fattori primi, operare algoritmi di crittografia, anche i più complessi svolgere alcune dimostrazioni matematiche come il famoso "teorema dei 4 colori" ecc... ! La cosa sorprendente è che alla base di tutto ci sono solo due simboli, su cui si fonda tutta l'informatica e l'elettronica digitale! : Lo \( 0\) e l'\(1\).

H come Hamilton! Quaternioni ed ipercomplessi

I quaternioni non risalgono alla notte dei tempi! La loro scoperta, dovuta al genio di Hamilton risale circa al 1843, quado, dopo aver ricercato senza successo un’estensione tridimensionale, ne formulò una con dimensione quattro

I Mattoni della fisica: scalari, vettori, matrici, tensori…

La fisica, si sa, è densa di matematica… e quando la matematica si apre ai nostri occhi ed alla nostra mente, lo fa attraverso la geometria. Tutto ciò che percepiamo, tutto ciò che immaginiamo, tutto ciò che costruiamo… è il frutto della nostra psiche e della fantasia del nostro straordinario cervello con le sue migliaia di interconnessioni neuronali. La questione se la matematica è il frutto della mente umana oppure è qualcosa di assoluto da scoprire è la chiave di tutto, del modo in cui la mente costruisce il mondo intorno a se. Ma come possiamo realizzare tutto questo?

Numeri Complessi “in sintesi”

I numeri complessi, rappresentano una estensione dell'insieme \( \mathbb R\) dei numeri reali. I motivi di questa estensione sono molteplici. Come primo esempio ricordo l'impossibilità di risoluzione delle equazioni di secondo grado, quando il discriminante è negativo - se ci restringiamo ai soli numeri, reali... ma del resto i matematici amano fantasticare con la mente, e come al solito si inventano delle bellissime strutture algebriche astratte, che per gioco forza poi entrano a far parte del mondo della fisica e si permeano nei modi più assoluti e straordinari, nella descrizione dei fenomeni naturali.

Euler's Gamma

Gaussian

Euler's angles

Sea shell

Riemann surface

Calabi-Yau Manifold